Costs and Travel Choices in a Three Revolutions World

Lewis Fulton
Director of the Sustainable Transportation Energy Pathways (STEPS) program, ITS UC Davis

Breakfast Meeting
Berlin | 01 June 2018
Sustainable Transportation Energy Pathways (STEPS)

Costs and Travel Choices in a 3R World

Agora Verkehrswende
Breakfast Meeting, Berlin

1 June 2018

Lew Fulton, STEPS Director
lmfulton@ucdavis.edu

www.steps.ucdavis.edu
Passenger Transport Revolutions

1. Streetcars (~1890)
2. Automobiles (~1910)
3. Airplanes (~1930)
4. Limited-access highways (1930s….1956)

2010+
1. Vehicle electrification
 – low carbon vehicles and fuels
2. Real-time, shared mobility
 – less vehicle use
3. Vehicle automation (2025?)
 – Uncertain impacts
Have EVs arrived?
During 2017, the number of PEVs worldwide will likely go over 3 million, with over 1 million in sales this year.
Many PEV sales forecasts getting optimistic about PEV sales

Perhaps 15% of world market in 2030

Perhaps 40% of world market in 2040

Source: Bloomberg New Energy Finance
Passenger Transport Revolutions

1. Streetcars (~1890)
2. Automobiles (~1910)
3. Airplanes (~1930)
4. Limited-access highways (1930s….1956)

2010+
1. Vehicle electrification
 - low carbon vehicles and fuels
2. Real-time, shared mobility
 - less vehicle use
3. Vehicle automation (2025?)
 - Uncertain impacts
A plausible PEV rollout scenario based on technology change, incentives & history of previous technology rollouts

This sales curve would be similar to the rollout of HEVs in Japan & California, 1997-2015

1st generation
early policy, converted vehicles, "innovators" & early infrastructure

2nd generation
improved batteries, more driving range, "followers" Adequate infrastructure

3rd generation:
batteries, vehicles, "core market" PEVs competitive

4th generation: PEVs begin to dominate

2030

California 2025 ZEV goal = 15% / 1.5 million BEVS, FCV & PHEVs

Main market 15-25%

2025

Early core market: 6-15%

2020

2015

3-5% of market

2010

1-2%

Lithium pack prices per kWh

700
300
200
150

This sales curve would be similar to the rollout of HEVs in Japan & California, 1997-2015
Car of the future?

Accelerating the Next Revolution
In Roadway Safety

September 2016
Or this?
Electrification + Automation: likely, but not definitely, together

All autonomous vehicles in development feature some form of electrification

<table>
<thead>
<tr>
<th>Parent Company</th>
<th>Make</th>
<th>Model</th>
<th>Powertrain</th>
<th>Production Goal</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nissan</td>
<td>Nissan</td>
<td>Leaf</td>
<td>Electric</td>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td>Chevrolet</td>
<td>Bolt</td>
<td>Electric</td>
<td></td>
<td>Testing 40 vehicles in SF and Scottsdale</td>
</tr>
<tr>
<td>FCA</td>
<td>Chrysler</td>
<td>Pacifica</td>
<td>Hybrid</td>
<td></td>
<td>Testing 100 vehicles with Google</td>
</tr>
<tr>
<td>Ford</td>
<td>Ford</td>
<td>Fusion</td>
<td>Hybrid</td>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>Volvo</td>
<td>Volvo</td>
<td>XC90</td>
<td>Hybrid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uber</td>
<td>Ford</td>
<td>Fusion Energi</td>
<td>PHEV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uber</td>
<td>Volvo</td>
<td>XC90</td>
<td>Hybrid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daimler</td>
<td>Mercedes- Benz F015 Luxury in Motion</td>
<td>Hydrogen Fuel Cell Plug-In Hybrid</td>
<td></td>
<td>Research Vehicle</td>
<td></td>
</tr>
</tbody>
</table>
AV costs dropping quickly

Cost of LIDAR used on the Google car was $75 – 85,000, and by early 2016, Velodyne began selling LIDAR for $500 per unit to Ford.
Ride sharing is exploding around the world…

…but is it really ride sharing?
Ride-hailing in the U.S. currently substitutes for more sustainable modes than for driving

- 49% to 61% of ride-hailing trips in major U.S. metro areas would have not been made at all, or by walking, biking, or transit.
- Ride-hailing attracts Americans away from bus services (a 6% reduction) and light rail services (a 3% reduction).
- Ride-hailing serves as a complementary mode for commuter rail services (a 3% net increase in use).
- Directionally, we conclude that ride-hailing is currently likely to contribute to growth in vehicle miles traveled (VMT).

Research undertaken by UC Davis and ITDP, part 3 of a series

Global scenario study to 2050 focused on potential 3 Revs impacts on CO2, energy use, costs

Study supported by UC Davis STEPS Consortium and by Climate Works, Hewlett Foundation, Barr Foundation

https://steps.ucdavis.edu/three-revolutions-landing-page/

Three Revolutions in Urban TRANSPORTATION

How to achieve the full potential of vehicle electrification, automation and shared mobility in urban transportation systems around the world by 2050

Lew Fulton, UC Davis
Jacob Mason, ITDP
Dominique Meroux, UC Davis

May 2017

Research supported by:
ClimateWorks Foundation, William and Flora Hewlett Foundation, Barr Foundation
Rough guide to the three scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Automation</th>
<th>Electrification</th>
<th>Shared Vehicles</th>
<th>Urban Planning/ Pricing/TDM Policies</th>
<th>Aligned with 1.5 Degree Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business as usual, Limited Intervention</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>1R Automation only</td>
<td>HIGH</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>2R With high Electrification</td>
<td>HIGH</td>
<td>HIGH</td>
<td>Low</td>
<td>Low</td>
<td>Maybe</td>
</tr>
<tr>
<td>3R With high shared mobility, transit, walking/cycling</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>YES</td>
</tr>
</tbody>
</table>

Source: UC Davis Institute for Transportation & Development Policy (ITDP)

Sustainable Transportation Energy Pathways
Urban LDV passenger kms by scenario, USA

- Electric vehicle travel reaches nearly 1/3 of PKMs by 2030
- Automated vehicle travel not significant by 2030 in any scenario, but dominates in 2R and 3R 2050. Results in much higher travel in 2R
Urban LDV travel (VKm) by scenario, USA

- **2R** vehicle travel rises sharply after 2030 due to lower travel costs from automated vehicles
- **3R** vehicle travel flat despite declining vehicle stock, given higher travel per vehicle of public vehicles

![Graph showing Urban LDV travel (VKm) by scenario, USA](image)
Urban LDV stock evolution by scenario, USA

- 2R stocks nearly completely autonomous by 2050
- 3R stocks strongly decline after 2030, due to lower passenger travel levels, intensive vehicle use and higher load factors
Well-to-wheels CO2 by scenario/technology, USA

4DS electricity shown; in 2DS, CO2 from electricity drops to near zero in 2050

CO2 emissions by technology, USA

<table>
<thead>
<tr>
<th></th>
<th>BAU 2015</th>
<th>BAU 2030</th>
<th>1R 2030</th>
<th>2R 2030</th>
<th>3R 2030</th>
<th>BAU 2050</th>
<th>1R 2050</th>
<th>2R 2050</th>
<th>3R 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICE Vehicles | Electric Vehicles
Total cost by scenario and mode, USA

- Total societal (out-of-pocket) 3R cost in 2050 is only 2/3 of BAU or 2R cost, thanks to deep cuts in car ownership, energy use, and road/parking requirements.

![USA Scenario comparison chart]

- Cycle/ebike
- M2W
- Rail
- Bus
- Shared car automated
- Shared car
- Private car automated
- Private car

<table>
<thead>
<tr>
<th>Year</th>
<th>BAU 2015</th>
<th>BAU 2030</th>
<th>2R 2030</th>
<th>3R 2030</th>
<th>BAU 2050</th>
<th>2R 2050</th>
<th>3R 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD billions</td>
<td>1000</td>
<td>1500</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>3500</td>
<td>4000</td>
</tr>
</tbody>
</table>

[Graph showing cost comparison for different scenarios and modes in the USA]
Supportive Policies – critical to success of the scenarios

- **3R Scenario** (Automation + Electrification + **Sharing**):
 - Compact Urban Development policies
 - Efficient parking policies
 - Heavy investment in transit/walking/cycling
 - VKT fees (incl. congestion & emission factors):
Some questions and conflicts

• Automation: lower per-trip costs, lower “time cost” for being in vehicles
 – Just how much cheaper will it be?
 – Private automated vehicles = longer trips?
 – Empty running (zero passengers) of vehicles
 – Resulting relative costs of private vehicles, shared mobility, transit?

• Electrification goes with automation – does it really?
 – Can get the job done with upgraded electrical system (such as hybrids)
 – But electric running will be much cheaper – and durable?

• Ride hailing: cost savings v. convenience and risk
 – Complementary or at conflict with public transit use?
 – Will lower costs reduce the incentive to ride share?
The wide range of costs related to mobility choices

Out-of-pocket Costs
- Vehicle purchase
- Vehicle maintenance
- Fuel
- Insurance
- Cleaning
- Parking
- Driver
- MaaS fees
- Tolls
- Registration-related fees

Hedonic costs
- Travel time (driving)
- Travel time (passenger)
- Parking search time
- Walking time
- Driving stress
- Shared trips (e.g. lack of privacy)
- EV range, charging anxiety
- Car ownership negatives (maintenance, registration, inspections etc.)
- Car ownership positives (car pride, guaranteed ride; can leave personal belongings in the car)
- Perceived Environmental Cost
Out-of-pocket costs: Comparison of modes

- **Driven TNC vehicles are premium service, automation makes these competitive**

![Graph showing cost comparison for different modes in 2025](image_url)

- **2025 - Midsize vehicle ($/PMT)**
 - Private ICE
 - Private EV
 - Private EV/AV
 - Maas ICE
 - Maas EV
 - Maas EV/AV
 - Maas EV/AV Pooled

 - **Legend:**
 - MaaS fees
 - Driver cost
 - Vehicle cleaning
 - Vehicle parking
 - Vehicle maintenance
 - Vehicle insurance
 - Fuel cost
 - Amortized purchase cost
Added a value of time for driving, travelling, parking

- **Time costs are equal to or in some cases far greater than the out-of-pocket costs**
Included only variable costs (daily decision)

- Ignore private car purchase, insurance cost
- The AV/EV private car becomes cheaper than shared mobility

![Chart showing cost comparison between different vehicle types and MaaS models.](chart_image)

- Parking search cost
- Travel time cost per passenger
- MaaS fees
- Driver cost
- Vehicle cleaning
- Vehicle parking
- Vehicle maintenance
- Vehicle insurance
- Fuel cost
- Amortized purchase cost

2025 - Midsize vehicle ($/PMT)
Costs of Mobility…

• Still trying to get a handle on monetary costs of different modes
 – Wide range of fixed and variable costs
 – ICE vs electric and automated vehicles
 – Differences by trip type and location
• But at the same time, we have reason to believe that non-monetary costs are as important or potentially more important.
 – Even harder to quantify
 – But let’s try
Considering these costs by when, and how often, paid

<table>
<thead>
<tr>
<th></th>
<th>Separate from trip</th>
<th>Once per trip</th>
<th>Lumpy</th>
<th>Roughly per-mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary</td>
<td>• Insurance</td>
<td>• Parking cost</td>
<td>• Tolls</td>
<td>• Depreciation</td>
</tr>
<tr>
<td></td>
<td>• Registration and other annual or</td>
<td>• TNC "first mile" fee</td>
<td>• Vehicle cleaning</td>
<td>• Maintenance</td>
</tr>
<tr>
<td></td>
<td>monthly fees</td>
<td></td>
<td></td>
<td>• Fuel cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• TNC per-mile fees</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Per-mile road user fees (taxes)</td>
</tr>
<tr>
<td>Non-monetary</td>
<td>• Maintenance and inspections events</td>
<td>• Time spent parking and</td>
<td>• Refueling/</td>
<td>• Travel time</td>
</tr>
<tr>
<td></td>
<td>(time, loss of vehicle use)</td>
<td>searching for parking</td>
<td>cleaning time</td>
<td>• Driving</td>
</tr>
<tr>
<td></td>
<td>• Car ownership pride and other</td>
<td>• Walking to/from vehicle to</td>
<td>• Recharging search,</td>
<td>• Ride sharing (pooling)</td>
</tr>
<tr>
<td></td>
<td>hedonic ownership benefits</td>
<td>"door"</td>
<td>recharging time,</td>
<td>• stress/enjoyment</td>
</tr>
<tr>
<td></td>
<td>• Per-vehicle environmental impacts</td>
<td>• Loading/unloading vehicle</td>
<td>anxiety</td>
<td>• Other in-ride hedonic factors</td>
</tr>
<tr>
<td></td>
<td>(vehicle production, disposal)</td>
<td></td>
<td>• Keeping items in</td>
<td>• In-ride productivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vehicle</td>
<td>• Per-mile environmental impacts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(CO2, air pollutants)</td>
</tr>
</tbody>
</table>
Important when in own vehicle *(positive/negative)*

<table>
<thead>
<tr>
<th>Monetary</th>
<th>Separate from trip</th>
<th>Once per trip</th>
<th>Lumpy</th>
<th>Roughly per-mile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Insurance</td>
<td>• Parking cost</td>
<td>• Tolls</td>
<td>• Depreciation</td>
</tr>
<tr>
<td></td>
<td>• Registration and other annual or monthly fees</td>
<td>• TNC "first mile" fee</td>
<td>• Vehicle cleaning</td>
<td>• Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fuel cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• TNC per-mile fees</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Per-mile road user fees (taxes)</td>
</tr>
<tr>
<td>Non-monetary</td>
<td>• Maintenance and inspections events (time, loss of vehicle use)</td>
<td>• Time spent parking and searching</td>
<td>• Refueling/cleaning</td>
<td>• Travel time</td>
</tr>
<tr>
<td></td>
<td>• Car ownership pride and other hedonic ownership benefits</td>
<td>for parking</td>
<td>time</td>
<td>• Driving stress/enjoyment</td>
</tr>
<tr>
<td></td>
<td>• Per-vehicle environmental impacts (vehicle production, disposal)</td>
<td>• Walking to/from vehicle to "door"</td>
<td>• Recharging search,</td>
<td>• Ride sharing (pooling) stress/enjoyment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Loading/unloading vehicle</td>
<td>recharging time,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>anxiety</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Keeping items in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vehicle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Refueling/cleaning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Per-mile environmental</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>impacts (CO₂, air</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pollutants)</td>
<td></td>
</tr>
</tbody>
</table>
Important when Ride-hailing (positive/negative)

<table>
<thead>
<tr>
<th></th>
<th>Separate from trip</th>
<th>Once per trip</th>
<th>Lumpy</th>
<th>Roughly per-mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary</td>
<td>• Insurance</td>
<td>• Parking cost</td>
<td>• Tolls</td>
<td>• Depreciation</td>
</tr>
<tr>
<td></td>
<td>• Registration and other annual or monthly fees</td>
<td>• TNC "first mile" fee</td>
<td>• Vehicle cleaning</td>
<td>• Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fuel cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• TNC per-mile fees</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Per-mile road user fees (taxes)</td>
</tr>
<tr>
<td>Non-monetary</td>
<td>• Maintenance and inspections events (time, loss of vehicle use)</td>
<td>• Time spent parking and searching for parking</td>
<td>• Refueling/cleaning time</td>
<td>• Travel time</td>
</tr>
<tr>
<td></td>
<td>• Car ownership pride and other hedonic ownership benefits</td>
<td>• Walking to/from vehicle to "door"</td>
<td>• Recharging search, recharging time, anxiety</td>
<td>• Driving stress/enjoyment</td>
</tr>
<tr>
<td></td>
<td>• Per-vehicle environmental impacts (vehicle production, disposal)</td>
<td>• Loading/unloading vehicle</td>
<td>• Keeping items in vehicle</td>
<td>• Ride sharing (pooling) stress/enjoyment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Other in-ride hedonic factors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• In-ride productivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Per-mile environmental impacts (CO2, air pollutants)</td>
</tr>
</tbody>
</table>
Cost types where we have **poor or no data**

<table>
<thead>
<tr>
<th>Monetary</th>
<th>Separate from trip</th>
<th>Once per trip</th>
<th>Lumpy</th>
<th>Roughly per-mile</th>
</tr>
</thead>
</table>
| • Insurance
• Registration and other annual or monthly fees | • Parking cost
• TNC "first mile" fee | • Tolls
• Vehicle cleaning | • Depreciation
• Maintenance
• Fuel cost
• TNC per-mile fees
• Per-mile road user fees (taxes) |

<table>
<thead>
<tr>
<th>Non-monetary</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| • Maintenance and inspections events (time, loss of vehicle use)
• Car ownership pride and other hedonic ownership benefits
• Per-vehicle environmental impacts (vehicle production, disposal) | • Time spent parking and searching for parking
• Walking to/from vehicle to "door“
• Loading/unloading vehicle | • Refueling/cleaning time
• Recharging search, recharging time, anxiety
• Keeping items in vehicle | • Travel time
• Driving stress/enjoyment
• Ride sharing (pooling) stress/enjoyment
• Other in-ride hedonic factors
• In-ride productivity
• Per-mile environmental impacts (CO2, air pollutants) |
Fixed, lumpy and per-mile costs – for those costs we have

- **Many costs are fixed or lumpy**
- **TNC fees and travel time dominate per-mile costs**
• **Private automated vehicle trips starting to look good, especially for shorter trips (this one is 6 miles, 30 mph)**
Same scenario, but shown as total costs for a six mile trip

- Costs range from $2 to $12 per trip; driverless modes below $4
Data converted to per-trip costs for a 20 mile trip

• Fixed costs become less important for longer trips
And for a 2 mile trip

- Fixed costs start to dominate short trips
What about other non-monetary costs?

• We need to do much in-depth survey work, and maybe experiments to judge behavior in different situations
• Some aspects will be difficult to assess until situations change
 – Driverless vehicles:
 • Attitudes about travel, effective time cost penalties
 • Changes in total travel
 – EVs: recharging anxiety in an age of fast charging, abundant charging
 – Shared mobility: attitudes about pooling with no driver
A couple of thought experiments (don’t try this at home)

- **Value of being able to store things in the vehicle**
 - If it takes 2 minutes (twice) to load/unload things like car seats and generally get all your stuff in and out of your car every trip, and it’s an unwelcome hassle, this might be valued $15k/hour. That’s a $1 hedonic cost per trip \((4/60 \times $15)\). For a 6 mile trip, that’s **$0.17 per mile**

- **Cost of an uncertain ride**
 - A “certain” ride means there is a car in a known location and you have the keys. There may be a cost to any uncertainty about available commercial rides, as well as time variance.
 - If one expects to ride hail with vehicle arrival in, say, 5 minutes there might be a hedonic cost if it arrives later than this. Each additional minute might cost \(1/60 \times $15/\text{hr}\). This cost may also rise per minute, as frustration (or lateness) mounts. A vehicle that is 4 minutes late would incur a $1 hedonic cost; if it happens (or is expected to happen) every 4\(^{th}\) trip, this amounts to an average of about **$0.04 per mile** for a 6 mile trip
Simple $15/hour time cost analysis across activities (Example of a 6 mile, 12 minute trip, 30 miles per hour)

- A few activities stand out as possibly “expensive”

<table>
<thead>
<tr>
<th>Activity</th>
<th>Time (mins)</th>
<th>$ / hour</th>
<th>$ / event</th>
<th>Events / trip</th>
<th>$ / trip</th>
<th>$ / mile</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading / unloading</td>
<td>4</td>
<td>15</td>
<td>0.50</td>
<td>0.50</td>
<td>1.00</td>
<td>0.08</td>
<td>2 minutes twice per trip</td>
</tr>
<tr>
<td>Uncertain ride</td>
<td>5</td>
<td>15</td>
<td>1.25</td>
<td>0.25</td>
<td>0.31</td>
<td>0.05</td>
<td>5 minutes wait time, 1/4 of trips</td>
</tr>
<tr>
<td>Maintenance events</td>
<td>30</td>
<td>15</td>
<td>7.50</td>
<td>0.01</td>
<td>0.08</td>
<td>0.01</td>
<td>20 minutes for dropoff, 10 for pickup</td>
</tr>
<tr>
<td>Parking / searching</td>
<td>5</td>
<td>15</td>
<td>1.25</td>
<td>1.00</td>
<td>1.25</td>
<td>0.21</td>
<td>5 mins for parking search and parking, once per trip</td>
</tr>
<tr>
<td>Walking to / from car</td>
<td>3</td>
<td>15</td>
<td>0.75</td>
<td>2.00</td>
<td>1.50</td>
<td>0.25</td>
<td>3 minutes twice per trip (short walks, one could be driveway)</td>
</tr>
<tr>
<td>Refueling / cleaning time</td>
<td>5</td>
<td>15</td>
<td>1.25</td>
<td>0.10</td>
<td>0.13</td>
<td>0.02</td>
<td>Assumes one refueling per 10 trips</td>
</tr>
<tr>
<td>Public recharging search time, anxiety</td>
<td>5</td>
<td>20</td>
<td>1.67</td>
<td>0.20</td>
<td>0.33</td>
<td>0.06</td>
<td>Search time at higher per-hour cost</td>
</tr>
<tr>
<td>Driving</td>
<td>12</td>
<td>15</td>
<td>3.00</td>
<td>1.00</td>
<td>3.00</td>
<td>0.50</td>
<td>General travel time cost</td>
</tr>
<tr>
<td>Driving stress</td>
<td>12</td>
<td>5</td>
<td>1.00</td>
<td>0.50</td>
<td>1.00</td>
<td>0.08</td>
<td>Additional time cost due to stressful driving</td>
</tr>
</tbody>
</table>

UCDavis
SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS
Back to our 6 mile trip

- Costs range from $2 to $12 per trip; driverless modes below $4
6 mile trip, now with the additional categories

- The new categories, together, don’t change things much
Conclusions

• Non-market cost factors are many, varied and difficult to measure

• My very simplistic first cut suggests that some may be relatively unimportant, *on average*
 – May still be critical in certain situations, or for certain people

• More research is needed, such as focus groups and surveys
Thank you

Lew Fulton

Director,
Sustainable Transportation Energy Pathways Program
ITS-Davis

lfulton@ucdavis.edu
Thank you

Lew Fulton
Director,
Sustainable Transportation Energy Pathways Program
ITS-Davis
lfulton@ucdavis.edu